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ABSTRACT
This study utilized confirmatory factor analyses to examine the latent factor structure of the
Wechsler Intelligence Scale for Children–Fourth Edition, Italian adaptation (WISC–IV Italian) stan-
dardization sample. One through five, oblique first-order factor models and higher-order as well
as bifactor models were examined and compared using CFA. The bifactor model provided the
best explanation of the scale’s factor structure. Across all models, general intelligence accounted
for the largest amount of explained common variance, with group factors accounting for non-
significant and trivial amounts of explained common variance. Omega-hierarchical subscale
coefficients indicated that unit-weighted composites that would be generated by group factors
would contain miniscule unique variance and therefore be of little clinical utility. Results are
consistent with numerous empirical studies examining other European adaptations of the instru-
ment and are at odds with the model put forward by the publisher. Clinicians who use the WISC–
IV Italian adaptation are warned against attempting to interpret factor index scores independent
of general intelligence.
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Over the past 70 years theWechsler Intelligence Scales for
Children have become the most commercially popular
scales of intelligence for children (Alfonso, Oakland,
LaRocca, & Spanakos, 2000; Groth-Marnat, 2009; Kush,
1996; Pfeiffer, Reddy, Kletzel, Schmelzer, & Boyer, 2000;
Zhu & Weiss, 2005), transforming from a two-factor
(WISC: Wechsler, 1949) to a four-factor tool for assessing
the cognitive skills of children (WISC–IV; Wechsler,
2003a). This popularity extends beyond the United
States, to Europe, where the Wechsler scales for children
have been translated and adapted for use in the United
Kingdom (WISC–IVUK; Wechsler, 2004a; WISC–VUK;
Wechsler, 2016a), France (French WISC–IV; Wechsler,
2005a; French WISC–V, 2016b) and Italy (WISC–IV
Italian; Orsini, Pezzuti, & Picone, 2012). International
popularity notwithstanding, the Wechsler scales remain
contentious and have been criticized for their theoretical
incongruence for over the past 50 years for reasons
including increased numbers of factors despite their lack
of theoretical support, weak factorial invariance, inade-
quate long-term stability, and miniscule incremental
validity (Beaujean & Benson, 2018).

The development of theWISC–IV attempted to address
some of these criticisms by anchoring the construction of
the instrument to the theories of intelligence offered by
Carroll, Cattell, and Horn (Carroll, 1993, 2003, 2012;

Cattell & Horn, 1978; Horn, 1988; Horn & Blankson,
2005) that were later merged and referred to as the Cattell-
Horn-Carroll (CHC) model of cognitive abilities (McGrew
& Woodcock, 2001). Specifically, the WISC–IV included
subtests that were analogous to Carroll’s (1993, 2003, 2012)
Stratum I, narrow abilities, factor indexes that were analo-
gous to Stratum II broad abilities, and a composite estimate
(i.e., FSIQ) of general intelligence (Stratum III) consistent
with Wechsler’s (1939) notion of global capacity, and to
Spearman’s g (1927). The WISC–IV CHC-based models
(Chen, Keith, Chen, & Chang, 2009; Keith, Fine, Taub,
Reynolds, & Kranzler, 2006; Lecerf, et al., 2010b; Weiss,
Keith, Zhu, & Chen, 2013b) included some of the basic
Wechsler structure for subtests and associations with
Verbal Comprehension (VC; CHC Gc), Working
Memory (WM; CHC Gsm) sans Arithmetic, and
Processing Speed (PS; CHC Gs); however, the WISC–IV
Perceptual Reasoning (PR) dimension was split into two
CHC factors with Block Design and Picture Completion
intending to measure visual processing (Gv) and Matrix
Reasoning and Picture Concepts purportedly measuring
fluid reasoning (Gf). These CHC models are not without
critics, including Canivez and Kush (2013), who pointed
out multiple deficiencies and diminished utility of the
proposed CHC models for the WAIS–IV and WISC–IV
(Weiss, Keith, Zhu, & Chen, 2013a, 2003b).
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In a departure from the framework bequeathed by
Wechsler, Verbal and Performance IQs were eliminated
and were replaced by four-factor index scores: Verbal
Comprehension (VC), Perceptual Reasoning (PR),
Working Memory (WM), and Processing Speed (PS)
and Full-Scale IQ was retained as a composite general
ability estimate. The factor structure of the WISC–IV
was examined by the publisher using both exploratory
(EFA) and confirmatory (CFA) factor analyses of the
normative sample with both core (10 subtest) and sup-
plemental (15 subtest) batteries (Wechsler, 2003b).
These analyses produced the expected four, first-order
factors. Independent analyses of the normative data
(Sattler, 2008), produced comparable factor structure
and measurement invariance across gender (Chen &
Zhu, 2012) as well as age (Keith et al., 2006) and for
both clinical and non-clinical populations (e.g., Chen &
Zhu, 2012; Keith et al., 2006).

Curiously, the publisher failed to perform a higher-
order factor analysis to evaluate the proposed multi-
level structure of the WISC–IV (Wechsler, 2003b).
Subsequently, three independent analyses of the
WISC–IV standardization sample were conducted.
The first two analyses (Keith, 2005; Keith et al.,
2006) were fraught with numerous methodological
shortcomings (e.g., limited number of models consid-
ered, abandonment of simple structure, factor loadings
of 1.00) although a more rigorous third study
(Watkins, 2006), demonstrated the dominance of the
general intelligence factor when compared to the four
first-order factors where the general factor accounted
for almost three-fourths of the common variance, and
the largest first-order group factor contributed just
over 10% of the common variance.

In examinations of European translations and adap-
tations of theWISC–IV,Watkins, Canivez, James, Good,
and James (2013) examined the latent factor structure of
10 core subtests of the United Kingdom WISC–IV ver-
sion (WISC–IVUK; Wechsler, 2004a) using confirmatory
factor analytic (CFA) methods and concluded that
a resulting bifactor model provided the best explanation
of WISC–IVUK factor structure with a referred sample.
Subsequently, Canivez, Watkins, Good, James, and
James (2017) completed CFAs with all 15 core and
supplemental WISC–IVUK subtests and determined
that bifactor and higher-order representations of
Wechsler and CHC structures explained these data
equally well with another referred sample. However, in
all models the general intelligence factor captured sub-
stantially more variance than the four (Wechsler) or five
(CHC) group factors. Nothing is publicly known about
the latent factor structure of the WISC–IVUK standardi-
zation sample as the Administration and Scoring Manual

(Wechsler, 2004b) was devoid of such analyses and only
the US-based WISC–IV Technical and Interpretive
Manual (Wechsler, 2003b) was included in the sale of
the WISC–IVUK. Further, the publisher denied requests
for standardization sample raw data or correlation
matrices that would have allowed for such assessment
(Canivez et al., 2017; Watkins et al., 2013). Comparable
findings were found with the Spanish translation of the
Wechsler Intelligence Scale for Children-Fourth Edition
(WISC–IV Spanish; Wechsler, 2005b), developed for
Spanish-speakers in the United States. McGill and
Canivez (2016) utilized higher-order exploratory factor
analytic techniques with the Schmid and Leiman
(Schmid & Leiman, 1957) procedure not included in
the WISC–IV Spanish Technical Manual and found
again that the g factor accounted for large portions of
total and common variance. Using CFA techniques,
McGill and Canivez (2018) obtained similar results
where bifactor models were judged best, the g factor
contained large portions of explained variance, and the
four (10 subtest) or five (14 subtest) group factors con-
tained minimal amounts of explained variance.

The Wechsler Intelligence Scale for Children is the
most widely used intelligence test for children in Italy
(Cianci, Orsini, Hulbert, & Pezuti, 2013). Published in
2012, the WISC–IV, Italian adaptation (WISC–IV
Italian; Orsini et al., 2012) mirrored the factor structure
reported in the United States edition; however, to date,
only one independent research study exists examining
the factor structure of the WISC–IV Italian adaptation
based on the standardization sample. While the
Wechsler Intelligence Scale for Children-Fifth Edition
(WISC-V; Wechsler, 2014a, 2014b) recently became
available in the United States, the WISC–IV Italian
adaptation is the current version in that country and
remains widely used by Italian practitioners.
Information regarding the release of the next revision
of the WISC–IV Italian has not been made publicly
available.

In an extension of previous European studies, Kush
and Canivez (2018) examined the latent factor structure
of the WISC–IV Italian adaptation standardization
sample using Watkins (2018) best practices in explora-
tory factor analyses (EFA) not included in the WISC–
IV Italian Technical Manual. None of the extraction
criteria supported the retention of four factors, as sug-
gested by the WISC–IV Italian Technical Manual.
However, when the forced four-factor structure was
subjected to second-order factor analysis and trans-
formed with the Schmid and Leiman (1957) orthogo-
nalization procedure, the hierarchical g factor
accounted for large portions of total and common
variance, while the four first-order group factors
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accounted for small portions of total and common
variance, rendering interpretation at the factor index
level of dubious value.

Collectively, studies of both American and European
WISC–IV factor structure are consistent across both EFA
or CFA approaches (Bodin, Pardini, Burns, & Stevens,
2009; Canivez, 2014; Nakano & Watkins, 2013; Styck &
Watkins, 2016; Watkins, 2006, 2010; Watkins, Wilson,
Kotz, Carbone, & Babula, 2006), and with other versions
of Wechsler scales (Canivez & Watkins, 2010a, 2010b;
Canivez, Watkins, & Dombrowski, 2016, 2017; Canivez,
Watkins, & McGill, 2019; Golay & Lecerf, 2011; Golay,
Reverte, Rossier, Favez, & Lecerf, 2013; Lecerf & Canivez,
2018; Lecerf, Rossier, Faves, Reverte, & Coleaux, 2010b;
McGill & Canivez, 2016; Nelson, Canivez, & Watkins,
2013; Watkins & Beaujean, 2014) in demonstrating that
the largest portions of variance is captured by the g factor
and only relatively small allotments of variance were
uniquely associated with group factors.

Bifactor models of human intelligence examine
group factors derived from the residual correlations
that remain after extracting the general factor
(Holzinger & Swineford, 1937), and have a long history
in the field of cognitive assessment (Gustafsson &
Balke, 1993). While both bifactor models and hierarch-
ical models include a general factor, there are impor-
tant differences between the two approaches. In
a hierarchical model, a higher-order factor accounts
for common variance across lower-order oblique fac-
tors, and common subtest variance is attributed to the
intercorrelations between factors (Brown, 2006). In
contrast, with bifactor models, the general factor
reflects common variance across subtest indicators
while multiple group factors reflect additional shared
variance that is not attributed to the general factor.
Additionally, in bifactor models, the general and
group factors are orthogonal and compete equally to
explain subtest variance; they are not considered as
either “higher” or “lower” relative to each other
(Brunner, Nagy, & Wilhelm, 2012; Gignac, 2008;
Schmid & Leiman, 1957). Finally, with bifactor models,
the identification of a general factor that explains the
subtest indicator intercorrelations is retained, and in
addition, nuisance factors are identified that express
the subtest covariation that is independent of the cov-
ariation due to the general factor.

When considerations are made across fit indices (e.g.,
AIC, BIC, CFI, TLI, RMSEA, SRMR) bifactor models of
intelligence have demonstrated considerable advantages
(Canivez, 2014; Gignac, 2006) and when compared with
alternative CFA models, bifactor model are often pre-
ferred (Mansolf & Reise, 2017; Morgan, Hodge, Wells, &
Watkins, 2015; Murray & Johnson, 2013). Additionally,

as demonstrated by Gignac (2016), fit indices which
incorporate a penalty for model complexity do not
favor the bifactor model and proportionality constraints
must be taken into consideration when comparing the
higher-order and bifactor models. Consistent with other
CFA approaches, statistical fit should not be the sole
criterion for choosing a bifactor model, rather, the selec-
tion process should be theory-driven.

The exact number of factors claimed to be measured
by the WISC–IV remains nebulous with some studies
suggesting the instrument measures five (Golay et al.,
2013; Grégoire, 2006; Keith et al., 2006) while others,
perhaps six abilities (Flanagan & Kaufman, 2004; Lecerf
et al., 2010). CFA bifactor models fit WISC–IV data as
well or better than higher-order models and variance
estimates for the general intelligence factor has far
exceeded variance estimates of the group factors
(Canivez, 2014; Canivez et al., 2017, 2017; Gignac &
Watkins, 2013; Golay et al., 2013; Kush & Canivez,
2018; Watkins, 2010; Watkins & Beaujean, 2014;
Watkins et al., 2013). The present study examines and
compares both Wechsler- and CHC-based measure-
ment models, using both higher-order and bifactor
models, to determine best fit to WISC–IV Italian adap-
tation standardization sample data using CFA.

Method

Participants

The Italian standardization sample for the WISC–IV
Italian adaptation (WISC–IV Italian; Orsini et al., 2012;
Wechsler, 2012) consists of 2,200 participants divided
into 11 age groups, each of 12 months range, ranging
from 6 to 16 years and 11 months old. The sample was
reported to be representative of the Italian population
across parental educational level.

Instrument

The WISC–IV, Italian adaptation (WISC–IV Italian;
Orsini et al., 2012), is a test of general intelligence that
consists of 15 subtests (Ms = 10, SDs = 3), 10 of which
are mandatory and contribute to measurement of four
factor-based index scores: Verbal Comprehension Index
(VCI), Perceptual Reasoning Index (PRI), Working
Memory Index (WMI), and Processing Speed Index
(PSI). Each of the four index scores is expressed as
a standard score (Ms = 100, SDs = 15). The FSIQ is
composed of 10 core subtests (three Verbal
Comprehension, three Perceptual Reasoning, two
Working Memory, and two Processing Speed).
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The manual for the Italian adaptation of the WISC–
IV (Orsini et al., 2012) provides the subtest correlation
matrix and describes relationships with Full-Scale IQ,
the four-factor indexes, and two additional indexes
(GAI and CPI). In reviewing the WISC–IV Italian test
manual, internal consistencies, test–retest stability,
inter-rater agreement, and standard errors of measure-
ment are comparable with those of the American ver-
sion (Wechsler, 2003a, 2003b).

Procedure/analyses

EQS 6.3 (Bentler & Wu, 2016) was used to conduct CFA
using maximum likelihood estimation. Covariance
matrices were produced for CFA using the correlation
matrix, means, and SDs from the total WISC–IV Italian
standardization sample presented in the WISC–IV Italian
Technical and Interpretative Manual (Table 5.1). Some
first-order factors were underidentified because they were
measured by only two subtests. In those CFAs, the two
subtests were constrained to equality before estimating
bifactor models to ensure accurate identification (Little,
Lindenberger, & Nesselroade, 1999).

Consistent with previous WISC–IV structural ana-
lyses, four first-order models and two hierarchical
models were specified and examined: (a) one factor;
(b) two oblique verbal and nonverbal factors; (c) three
oblique verbal, perceptual, and combined working
memory/processing speed factors; (d) four oblique ver-
bal, perceptual, working memory, and processing speed
factors; (e) an indirect hierarchical (higher-order)
model (as per Bodin et al., 2009), with four first-order
factors; and (f) a direct hierarchical (bifactor) model (as
per Watkins, 2010), with four first-order factors.
Gignac (2008) has provided a detailed description of
direct and indirect hierarchical models, but the direct
hierarchical model is the bifactor model described by
Holzinger and Swineford (1937).

Although there are no universally accepted cut-off
values for approximate fit indices (Marsh, Hau, & Wen,
2004; McDonald, 2010), overall model fit was evaluated
using the comparative fit index (CFI), standardized
root-mean-squared residual (SRMR), and the root-
mean-square error of approximation (RMSEA).
Higher values indicated better fit for the CFI, whereas
lower values indicated better fit for the SRMR and
RMSEA. Additionally, the Akaike information criterion
(AIC) was considered, but the AIC does not have
a meaningful scale, so the model with the smallest
AIC values was preferred as such models are most
likely to replicate (Kline, 2016). Combinatorial heuris-
tics of Hu and Bentler (1999) were applied and criteria
for adequate model fit were CFI ≥ .90, SRMR ≤ .09, and

RMSEA ≤ .08. Good model fit required CFI ≥ 0.95 with
SRMR and RMSEA ≤ 0.06 (Hu & Bentler, 1999).
Statistical comparisons between models were made
using the ChiSquareDiff program (Watkins, 2012).
For a model to be considered superior, it had to exhibit
adequate to good overall fit and display meaningfully
better fit (ΔCFI > .01, ΔRMSEA < .015, and ΔAIC > 10)
than alternative models (Burnham & Anderson, 2004;
Chen, 2007; Cheung & Rensvold, 2002). All models
were examined for presence of local fit problems (e.g.,
negative, too high, or too low standardized path coeffi-
cients, coefficients exceeding limits [−1, 1], negative
variance estimates) as models should never be retained
“solely on global fit testing” (Kline, 2016, p. 461).

Model-based estimates of variance proportions that
would be obtained in unit-weighted composite scores
from associated indicators were estimated with coeffi-
cients omega-hierarchical (ωH) and omega-hierarchical
subscale (ωHS) (Reise, 2012; Rodriguez, Reise, &
Haviland, 2016). The ωH is the unique general intelli-
gence factor variability estimate with variability of
group factors removed. The ωHS is the unique group
factor variability estimate with the influence of all other
group and general factors removed (Brunner et al.,
2012; Reise, 2012). Omega estimates (ωH and ωHS)
were produced using the Omega program (Watkins,
2013), which is based on the tutorial by Brunner et al.
(2012) and the work of Zinbarg, Revelle, Yovel, and Li
(2005) and Zinbarg, Yovel, Revelle, and McDonald
(2006). Omega coefficients should at a minimum
exceed .50, but .75 is preferred (Reise, 2012; Reise,
Bonifay, & Haviland, 2013). The value of ωH and ωHS

is that one may determine the relative merit of how
much true score variance would be provided by a unit-
weighted score based on specified subtest indicators,
and if <50% true score variance was uniquely captured,
this would not indicate useful measurement of that
construct. The Hancock and Mueller (2001) construct
reliability or construct replicability coefficient (H) sup-
plemented omega coefficients and estimated the latent
construct adequacy represented by the indicators, using
a criterion value of .70 (Hancock & Mueller, 2001;
Rodriguez et al., 2016). H coefficients were produced
by the Omega program (Watkins, 2013).

Results

Model fit statistics presented in Table 1 illustrate the
increasingly better fit from 1 through 4 oblique factors;
however, fit statistics indicated that the one-, two-, and
three-factor models were inadequate using combinator-
ial criteria (Hu & Bentler, 1999), with the one- and
two-factor models producing RMSEAs ≥ .08. The
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oblique four-factor (VC, PR, WM, PS) Wechsler-based
model and oblique five-factor (Gc, Gv, Gf, Gsm, Gs)
CHC-based model provided the best fits to these data,
however, meaningful differences in fit statistics (CFI,
RMSEA, SRMR) were not observed. The oblique five-
factor CHC model produced a statistically significant
better fit than the oblique four-factor Wechsler model,
ΔMLχ2 = 22.04, Δdf = 4, p < .0002; and the oblique five-
factor CHC model had a meaningfully lower AIC
(ΔAIC = 14.04). Although both the Wechsler- and
CHC-based oblique models fit these data well, the
latent factor correlations (Table 2) for both models
(Wechsler correlations ranging .384–.803; CHC corre-
lations ranging .384–.965) were moderate to very high
and thus these models were deemed inadequate as
a general intelligence factor is suggested and required
explication (Canivez, 2016; Gorsuch, 1988; Reise, 2012;
Thompson, 2004). Further, in the oblique CHC model,
the Gv and Gf factor correlation of .949 indicated con-
siderable overlap and potential lack of discriminant
validity (Kline, 2016).

Combinatorial heuristics (Hu & Bentler, 1999) indi-
cated the CHC-based higher-order and bifactor models
exhibited adequate fits to these data (although RMSEA
slightly exceeded .06) and the Wechsler-based higher-

order and bifactor models were good fits to these data
and also produced the lowest AIC values and thus were
most likely to replicate (Kline, 2016). The Wechsler
bifactor model produced a statistically significant better
fit than the Wechsler higher-order model, ΔMLχ2 =
133.46, Δdf = 11, p < .0001. The CHC bifactor model
produced a statistically significant better fit than the
CHC higher-order model, ΔMLχ2 = 122.46, Δdf = 8,
p < .0001. The Wechsler bifactor model produced
a statistically significant better fit than the CHC bifac-
tor model, ΔMLχ2 = 35.16, Δdf = 2, p < .0001; and the
Wechsler bifactor model produced the lower AIC.
There were no meaningful fit statistics differences
(ΔCFI > .01 and ΔRMSEA > .015) between the
Wechsler bifactor (Figure 1), CHC bifactor (Figure 1),
Wechsler higher-order (Figure 2), and CHC higher-
order (Figure 2) models so all are presented for com-
parison and illustration. However, ΔAIC values showed
meaningful differences (ΔAIC > 10) and improvements
from the CHC higher-order to Wechsler higher-order
to CHC bifactor to Wechsler bifactor (best).

Tables 3–6 present decomposed variance estimates
based on the four different models including g and four
or five group factors for comparison. Explained common
variance (ECV) was dominated by the g factor in all four
models ranging from .669 to .739. The ωH coefficients for
the g factor in all four models were high, ranging from .898
to .906, and exceeded the .75 criterion for confident inter-
pretation (Reise, 2012; Reise et al., 2013). Explained com-
mon variancewas considerably lower for both theWechsler
group factors (VC, PR, WM, PS; .037 to .137) and CHC
group factors (Gc, Gv, Gf, Gsm, Gs; .011 to .136). The ωHS

coefficients for the Wechsler- and CHC-based group fac-
tors were also low, ranging from .053 to .517; almost all
falling short of the suggestedminimum .50 criterion (Reise,
2012; Reise et al., 2013). Consistent with the ECV estimates,
ωHS coefficients were also particularly quite low for CHC-
based Gv and Gf group factors with ωHS < .10, meaning
unit-weighted composite scores based onGv andGf subtest
indicators would account for <10% unique true score var-
iance. Tables 3–6 also present H coefficients that reflect

Table 1. CFA fit statistics for the WISC–IV Italian standardization sample (N = 2,200).
Model χ2 df CFI RMSEA 90% CI RMSEA SRMR AIC

One factor 1,751.35 90 .848 .092 [.088, .095] .067 156,878.12
Two oblique factors 1,396.79 89 .880 .082 [.078, .086] .060 156,525.56
Three oblique factors 1,126.86 87 .905 .074 [.070, .078] .055 156,259.63
Four oblique factors (Wechsler) 525.29 84 .960 .049 [.045, .053] .035 155,664.06
Five oblique factors (CHC) 503.25 80 .961 .049 [.045, .053] .034 155,650.02
Wechsler higher-order 549.82 86 .958 .050 [.046, .053] .036 155,684.59
CHC higher-order 573.98 85 .955 .051 [.047, .055] .037 155,710.75
Wechsler bifactor 416.36 75 .969 .045 [.041, .050] .030 155,573.13
CHC bifactor1 451.52 77 .966 .047 [.043, .051] .031 155,608.29

Note. CFI = comparative fit index; RMSEA = root mean square error of approximation; CI = confidence interval; SRMR = standardized root mean square
residual, AIC = Akaike’s information criterion, CHC = Cattell-Horn-Carroll. 1Two indicators of the second (Gv) and third (Gf) factors were constrained to
equality to ensure model identification. Best model presented in bold text.

Table 2. Latent factor correlations for WISC–IV Italian standardiza-
tion sample (N = 2,200) Wechsler and CHC-based oblique models.
Wechsler Model VC PR WM PS

VC –
PR .803 –
WM .776 .791 –
PS .384 .502 .478 –

CHC Model Gc Gv Gf Gsm Gs

Gc –
Gv .808 –
Gf .782 .965 –
Gsm .776 .735 .820 –
Gs .384 .520 .473 .478 –

Note. VC = Verbal Comprehension, PR = Perceptual Reasoning, WM =
Working Memory, PS = Processing Speed, CHC = Cattell-Horn-Carroll, Gc
= Crystallized Intelligence/

Comprehension Knowledge, Gv = Visual-Spatial, Gf = Fluid Intelligence/
Fluid Reasoning, Gsm = Short-term Memory (Working Memory), Gs =
Processing Speed.
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correlations between the latent factors and optimally
weighted composite scores based on the assigned indicators
(Rodriguez et al., 2016). The H coefficients for the general
factor ranged from .879 to .888 and indicated the general
factor would be well defined by the 15 WISC–V Italian
subtests, but the H coefficients for the four (Wechsler) or
five (CHC) group factors ranged from .072 to .605 and
indicated that the group factors in either Wechsler or

CHC configurations were inadequately defined by their
subtest indicators.

Discussion

Two primary conclusions are borne out of the current
results. First, the factor structure of the WISC–IV
Italian adaptation is better characterized by a model

SI VC CO IN WR BD PC MR PCn DS LNS AR CD SS CA

VC PR WM PS

g

.601 .595 .473 .546 .620 .265 .410 .231.591.534.607.680.559.678.693

.312 .490 .413 .293 .266 .274 .222 .349 .175 .523 .309 .165 .690 .509 .462

Wechsler Bifactor Model

SI VC CO IN WR BD PC MR PCn DS LNS AR CD SS CA

Gc Gv Gsm GsGf

g

.641 .614 .493 .545 .583 .327 .619 .493.618.570.566.634.573.685.654

.409 .431 .359 .397 .355 .185 .201 .296 .186 .287 .317 .340 .559 .360 .256

CHC Bifactor Model

Figure 1. Bifactor measurement models (Wechsler bifactor model and CHC bifactor model), with standardized coefficients, for the
WISC-IV Italian subtests with the standardization sample (N = 2,200). WISC–IV Italian subtests: SI = Similarities (Somiglianze), VC =
Vocabulary (Vocabolario), CO = Comprehension (Comprensione), IN = Information (Informazione), WR = Word Reasoning
(Ragionamento con le parole), BD = Block Design (Disegno con i cubi), PC = Picture Completion (Completamento di figure), MR
= Matrix Reasoning (Ragionamento con le matrici), PCn = Picture Concepts (Concetti illustrate), DS = Digit Span (Memoria di cifre),
LNS = Letter–Number Sequencing (Riordinamento di lettere e numeri), AR = Arithmetic (Ragionamento aritmetico), CD = Coding
(Cifrario), SS = Symbol Search (Ricerca di simboli), CA = Cancellation (Cancellazione). All standardized path coefficients statistically
significant (p < .05).
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that is substantially different than the one forwarded by
the publisher. This conclusion is not unique to the
present study and is supported by numerous indepen-
dent research findings examining both the American
and European versions of the test. Secondly, and also at
odds with the claims of the test publisher, the under-
lying structure of the WISC–IV Italian is best explained
primarily by general intelligence.

The current findings add to a growing body of evidence
supporting a bifactor structure of the fourth edition of the
Wechsler Intelligence Scale for Children (Canivez, 2014;
Canivez et al., 2017; Watkins, 2010; Watkins et al., 2013) as
well as with other versions of Wechsler scales (Canivez &

Watkins, 2010a, 2010b; Gignac, 2005, 2006). By specifying
a bifactor model, influences of g are direct to the subtests as
are influences of the four primary factors (VC, PR, WM,
and PS), rather than subtest influences of g being fully
mediated by the four group factors prescribed by a higher-
order model. The bifactormodel allows g to be closer to the
indicators (subtests) and g is conceptualized more as
a breadth factor, rather than a superordinate factor
(Gignac, 2008), allowing an examination of the distortion
that may occur when unidimensional models are fit to
multidimensional data. This seems more consistent with
Spearman’s (1904, 1927) conceptualization of general intel-
ligence. One of the distinctive features of the bifactormodel

Figure 2. Higher-order measurement models (Wechsler higher-order model and CHC higher-order model), with standardized
coefficients, for the 15 WISC-IV Italian subtests with the standardization sample (N = 2,200). WISC–IV Italian subtests:
SI = Similarities (Somiglianze), VC = Vocabulary (Vocabolario), CO = Comprehension (Comprensione), IN = Information
(Informazione), WR = Word Reasoning (Ragionamento con le parole), BD = Block Design (Disegno con i cubi), PC = Picture
Completion (Completamento di figure), MR = Matrix Reasoning (Ragionamento con le matrici), PCn = Picture Concepts (Concetti
illustrate), DS = Digit Span (Memoria di cifre), LNS = Letter–Number Sequencing (Riordinamento di lettere e numeri),
AR = Arithmetic (Ragionamento aritmetico), CD = Coding (Cifrario), SS = Symbol Search (Ricerca di simboli), CA = Cancellation
(Cancellazione). All standardized path coefficients statistically significant (p < .05).
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is that both g and first-order group factors are simultaneous
abstractions derived from the observed subtest indicators
and therefore a more parsimonious and less complicated
conceptual model (Canivez, 2016; Cucina & Byle, 2017;
Gignac, 2008).

By placing the general factor at the same level as the
group factors, the bifactor model is not really “hier-
archical” as is the higher-order model that has domi-
nated research on the structure of intelligence tests in
the United States. The present results also support

Carroll’s theory due to the large contributions of g in
WISC–IV Italian measurement and further supports
previous commentary by Cucina and Howardson
(2017) who also concluded from their analyses support
for Carroll but not Horn-Cattell. These and other fac-
tors led Canivez and Youngstrom (2019) to call for an
annulment of the arranged marriage of Cattell and
Horn theory and Carroll’s three stratum theory.

Consistent with the abundance of findings from the
Wechsler scales for both American and international

Table 3. Decomposed CFA variance sources for the WISC–IV Italian standardization sample (N = 2,200): Wechsler bifactor model (Figure 1).
General Verbal Comprehension Perceptual Reasoning Working Memory Processing Speed

WISC-IV Italian Subtest b S2 b S2 b S2 b S2 b S2 h2 u2 ECV

Similarities .693 .480 .312 .097 .595 .405 .405
Vocabulary .678 .460 .490 .240 .860 .140 .140
Comprehension .559 .312 .413 .171 .482 .518 .518
Information .680 .462 .293 .086 .725 .275 .275
Word Reasoning .607 .368 .266 .071 .549 .451 .451
Block Design .534 .285 .274 .075 .652 .348 .348
Picture Completion .591 .349 .222 .049 .539 .461 .461
Matrix Reasoning .601 .361 .349 .122 .640 .360 .360
Picture Concepts .595 .354 .175 .031 .416 .584 .584
Digit Span .473 .224 .523 .274 .975 .025 .025
Letter-Number Sequencing .546 .298 .309 .095 .493 .507 .507
Arithmetic .620 .384 .165 .027 .576 .424 .424
Coding .265 .070 .690 .476 .456 .544 .544
Symbol Search .410 .168 .509 .259 .606 .394 .394
Cancellation .231 .053 .462 .213 .434 .566 .566
Total Variance .309 .044 .018 .026 .063 .461 .539
ECV .669 .096 .040 .057 .137
ω .901 .857 .730 .684 .670
ωH/ωHS .803 .200 .118 .185 .517
Relative ω .892 .233 .162 .270 .771
H .881 .444 .233 .338 .605
PUC .790

Note. b = standardized loading of subtest on factor, S2 = variance, h2 = communality, u2 = uniqueness, ECV = explained common variance, ω = Omega,
ωH= Omega-hierarchical (general factor), ωHS= Omega-hierarchical subscale (group factors), H = construct reliability or replicability index, PUC = percentage
of uncontaminated correlations.

Table 4. Decomposed CFA variance sources for the WISC–IV Italian standardization sample (N = 2,200): CHC bifactor model (Figure 1).
General Gc Gv Gf Gsm Gs

WISC-IV Italian Subtest b S2 b S2 b S2 b S2 b S2 b S2 h2 u2 ECV

Similarities .678 .460 .346 .120 .579 .421 .793
Vocabulary .661 .437 .509 .259 .696 .304 .628
Comprehension .543 .295 .432 .187 .481 .519 .612
Information .654 .428 .342 .117 .545 .455 .785
Word Reasoning .592 .350 .298 .089 .439 .561 .798
Block Design .568 .323 .201 .040 .363 .637 .889
Picture Completion .616 .379 .201 .040 .420 .580 .904
Matrix Reasoning .639 .408 .195 .038 .446 .554 .915
Picture Concepts .613 .376 .195 .038 .414 .586 .908
Digit Span .464 .215 .520 .270 .486 .514 .443
Letter-Number Sequencing .540 .292 .326 .106 .398 .602 .733
Arithmetic .609 .371 .188 .035 .406 .594 .913
Coding .269 .072 .690 .476 .548 .452 .132
Symbol Search .412 .170 .506 .256 .426 .574 .399
Cancellation .240 .058 .457 .209 .266 .734 .216
Total Variance .309 .051 .005 .005 .027 .063 .461 .539
ECV .670 .112 .012 .011 .060 .136
ω .901 .857 .562 .601 .682 .671
ωH/ωHS .805 .236 .058 .053 .199 .512
Relative ω .893 .275 .103 .088 .291 .763
H .880 .486 .078 .073 .345 .603
PUC .829

Note. Gc = Crystallized Intelligence/Comprehension Knowledge, Gv = Visual-Spatial, Gf = Fluid Intelligence/Fluid Reasoning, Gsm = Short-term Memory
(Working Memory), Gs = Processing Speed, b = standardized loading of subtest on factor, S2 = variance, h2 = communality, u2 = uniqueness, ECV =
explained common variance, ω = Omega, ωH= Omega-hierarchical (general factor), ωHS= Omega-hierarchical subscale (group factors), H = construct
reliability or replicability index, PUC = percentage of uncontaminated correlations.
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samples, the underlying structure of the WISC–IV
Italian is best explained primarily by general intelli-
gence (Bodin et al., 2009; Canivez, 2014; Canivez &
Watkins, 2010a, 2010b; Gignac & Watkins, 2013;
Kush & Canivez, 2018; Nelson et al., 2013; Watkins,
2006, 2010, 2013; Watkins & Beaujean, 2014; Watkins
et al., 2006). Present results have also been replicated in
independent assessments of the Canadian, Spanish,

French, UK, and US versions of the WISC–V
(Canivez et al., 2016; 2017; Canivez et al., 2019;
Fennollar-Cortés & Watkins, 2018; Lecerf & Canivez,
2018; Watkins, Dombrowski, & Canivez, 2018).
Current results also directly align with the recent
Zaboski, Kranzler, and Gage (2018) meta-analysis of
cognitive ability measures, which demonstrated that
psychometric g had by far the strongest relationships

Table 5. Decomposed CFA variance sources for the WISC–IV Italian standardization sample (N = 2,200): Wechsler higher-order model
(Figure 2).

General Verbal Comprehension Perceptual Reasoning Working Memory Processing Speed

WISC-IV Italian Subtest b S2 b S2 b S2 b S2 b S2 h2 u2 ECV

Similarities .668 .446 .384 .147 .594 .406 .752
Vocabulary .701 .491 .403 .162 .654 .346 .752
Comprehension .586 .343 .338 .114 .458 .542 .750
Information .650 .423 .373 .139 .562 .438 .752
Word Reasoning .578 .334 .333 .111 .445 .555 .751
Block Design .543 .295 .348 .652 .348 .652 .848
Picture Completion .589 .347 .409 .591 .409 .591 .847
Matrix Reasoning .615 .378 .446 .554 .446 .554 .848
Picture Concepts .583 .340 .401 .599 .401 .599 .848
Digit Span .503 .253 .269 .072 .325 .675 .778
Letter-Number Sequencing .554 .307 .297 .088 .395 .605 .777
Arithmetic .598 .358 .320 .102 .460 .540 .777
Coding .326 .106 .560 .314 .420 .580 .253
Symbol Search .360 .130 .619 .383 .513 .487 .253
Cancellation .255 .065 .437 .191 .256 .744 .254
Total Variance .308 .045 .016 .018 .059 .576 .424
ECV .691 .101 .037 .039 .133
ω .898 .855 .728 .659 .659
ωH/ωHS .804 .213 .111 .147 .492
Relative ω .895 .249 .152 .223 .747
H .879 .439 .206 .224 .568
PUC .790

Note. b = standardized loading of subtest on factor, S2 = variance, h2 = communality, u2 = uniqueness, ECV = explained common variance,
ω = Omega, ωH= Omega-hierarchical (general factor), ωHS= Omega-hierarchical subscale (group factors), H = construct reliability or replicability index,
PUC = percentage of uncontaminated correlations.

Table 6. Decomposed CFA variance sources for the WISC–IV Italian standardization sample (N = 2,200): CHC higher-order model (Figure 2).
General Gc Gv Gf Gsm Gs

WISC-IV Italian Subtest b S2 b S2 b S2 b S2 b S2 b S2 h2 u2 ECV

Similarities .654 .428 .409 .167 .595 .405 .719
Vocabulary .685 .469 .431 .186 .655 .345 .716
Comprehension .573 .328 .359 .129 .457 .543 .718
Information .634 .402 .397 .158 .560 .440 .718
Word Reasoning .566 .320 .355 .126 .446 .554 .718
Block Design .570 .325 .185 .034 .359 .641 .905
Picture Completion .618 .382 .201 .040 .422 .578 .904
Matrix Reasoning .641 .411 .296 .088 .498 .502 .824
Picture Concepts .614 .377 .186 .035 .412 .588 .916
Digit Span .493 .243 .287 .082 .325 .675 .747
Letter-Number Sequencing .545 .297 .317 .100 .398 .602 .747
Arithmetic .583 .340 .340 .116 .455 .545 .746
Coding .327 .107 .559 .312 .419 .581 .255
Symbol Search .619 .383 .360 .130 .513 .487 .747
Cancellation .439 .193 .256 .066 .258 .742 .746
Total Variance .334 .051 .005 .008 .020 .034 .452 .548
ECV .739 .113 .011 .018 .044 .075
ω .906 .855 .561 .624 .659 .646
ωH/ωHS .833 .241 .054 .080 .167 .270
Relative ω .919 .282 .095 .129 .253 .419
H .888 .476 .072 .117 .249 .402
PUC .829

Note. Gc = Crystallized Intelligence/Comprehension Knowledge, Gv = Visual-Spatial, Gf = Fluid Intelligence/Fluid Reasoning, Gsm = Short-term Memory
(Working Memory), Gs = Processing Speed, b = standardized loading of subtest on factor, S2 = variance, h2 = communality, u2 = uniqueness,
ECV = explained common variance, ω = Omega, ωH= Omega-hierarchical (general factor), ωHS= Omega-hierarchical subscale (group factors), H = construct
reliability or replicability index, PUC = percentage of uncontaminated correlations.
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with academic achievement, with g explaining more
than 50% of the variance in achievement–more than
all broad cognitive abilities combined, and with the
meta-analytic findings of Warne and Burningham
(2019) who found that g accounted for approximately
half of the variance (45.9%) in the cognitive scores of
individuals in non-Western and non-industrialized
countries.

Decomposed variance estimates based on the bifac-
tor models (Tables 3 and 4) and higher-order models
(Tables 5 and 6) illustrated that the greatest portions of
subtest variance were associated with the g factor and
smaller portions of variance were associated with the
four or five group factors. Numerous studies of
Wechsler scales and other intelligence tests have con-
sistently found that the greatest portions of total and
common variance are apportioned to the second-order
g dimension (or bifactor/direct hierarchical g), which is
estimated by the FSIQ score, and much smaller por-
tions of total and common variance are apportioned to
the first-order or group factors, estimated by the
respective factor index scores. However, factor index
scores in Wechsler scales or other first-order factor-
based scores do not include only variance unique to
that factor. Factor index scores or first-order factor-
based scores conflate variance due to g and unique
variance from the group factor; necessitating examina-
tion of ωHS coefficients. This has been documented for
the WISC–IV (Bodin et al., 2009; Watkins, 2006;
Watkins et al., 2006), French WISC–IV (Golay et al.,
2013), French WAIS–III (Golay & Lecerf, 2011), and
the WAIS–IV (Canivez & Watkins, 2010a, 2010b). The
implication of these findings is that the overall, omni-
bus FSIQ score should retain primary (if not exclusive)
interpretive weight, as once the variance due to g is
removed, the first-order factors do not provide suffi-
cient information for interpretation.

Examination of the proportions of variance of the
latent constructs indicated that the broad g factor had
strong estimates allowing confident individual interpreta-
tion (ω = .901, ωH = .803), but the ωHS estimates for the
four WISC–IV Italian adaptation group factors were low
(.118-.517) and extremely limited for measuring unique
constructs (Brunner et al., 2012; Reise, 2012). Therefore,
the group factors (factor index scores) do not contain
sufficient unique true score measurement variance for
individual interpretation. For comparison purposes, stan-
dardized path coefficients fromWatkins (2010) were used
to calculateωH and present results were quite similar. The
ωH estimates for the four WISC–IV group factors from
Watkins (2010) were also very low (.112-.388). Canivez
(2014) also reported very low ωH coefficients for the four
WISC–IV group factors (.098-.330) in a sample of

referred children demographically similar to Watkins
(2010). This finding is consistent with studies from the
US general population and referred samples (Bodin et al.,
2009; Canivez, 2014; Styck & Watkins, 2016; Watkins,
2006, 2010; Watkins et al., 2006), and with Native
American children (Nakano & Watkins, 2013). Present
results are also consistent with several European WISC
versions. Specifically, similar results were found for the
WISC–IVUK with Irish students (Canivez et al., 2017;
Watkins et al., 2013), and with the WISC–IV Spanish
(McGill & Canivez, 2016, 2018).

Psychometric g remains one of the most powerful
constructs across the spectrum of psychological
domains due to its presence in almost all scales of
mental ability as well as its ability to predict a myriad
of socially significant variables. It is critical however to
remember the distinction between g and intelligence.
The g factor is a hypothetical source of individual
differences in performance on tasks on almost all cog-
nitive measures regardless of their diversity and g is
clearly related to the degree of complexity of the task’s
demands. The goal of this paper is not to promote any
particular theory of intelligence but rather to point out
that regardless of the theory of intelligence, the inclu-
sion of the respective group factors (e.g., attention,
inspection time, short-and long-term memory, analyti-
cal problem solving), will indeed improve predictive
power but the influence will be relatively small when
compared to g.

The evolution of the Wechsler scales in general, and
the children’s edition specifically, has followed a non-
linear trajectory. The selection of subtests is diverse and
reflects a tremendous improvement over early scales
(e.g., Galton’s emphasis on sensory input – “Keenness
of Sight and of Hearing; Colour Sense, Judgement of
Eye; Breathing Power; Reaction Time; Strength of Pull
and of Squeeze; Force of Blow; Span of Arms; Height,
both standing and setting; and Weight” (Galton, 1908,
p. 245). Yet in other ways, the composition of the scales
have become bloated, attempting and claiming to do
too much. The inclusion of many of the subtests
ignores one of the critical characteristics of an intelli-
gence test, put forward over 100 years ago, “Our pur-
pose is to evaluate a child’s level of intelligence. It
should be understood that this means separating nat-
ural intelligence from instruction. It is his intelligence
alone that we seek to measure, by disregarding as far as
possible the degree of instruction which the child has
enjoyed” (Binet, 1905, p. 196). Unfortunately, most
modern revisions of the Wechsler scales are not sup-
ported by sound psychological theory. The identifica-
tion of composite scores often appears to be done post-
hoc; after the completion of factor analyses. Similarly,
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subtests appear to be treated as interchangeable and are
added or deleted across revisions based on short-term
influences. For example, between 1947 and 2002,
Americans gained 24 points on Similarities, but only 2
points on Arithmetic and Information, while they all
loaded heavily on g and on the Verbal factor (Flynn,
2009). However, the 10 core subtests of the WISC-IV
used to measure Full-Scale IQ no longer include
Information and Arithmetic.

Critics of commercially available intelligence tests
(Gould, 1996; Murdoch, 2007) have argued that they
include content that is influenced by nonintellectual
factors, including reading ability, socioeconomic status,
test-taking strategies, and cultural familiarity. The
inclusion of these components improves the predictive
power of the instruments because intelligence and other
factors are being assessed (Watkins et al., 2006).
Clearly, the knowledge of an individual’s cognitive abil-
ity, as well as other factors related to academic achieve-
ment, offers an advantage over the sole knowledge of
intellectual skills (Kush, Spring, & Barkand, 2012).
However, as Jensen (1979) pointed out over 30 years
ago, intelligence must be distinguished from learning,
memory, and achievement. Intelligence is related to,
but not the same as, academic achievement, and as
Naglieri has cogently opined (Naglieri & Das, 1997;
Naglieri & Rojahn, 2004), most current intelligence
tests are contaminated with achievement content that
confounds their interpretability.

We are not intelligence test apologists and believe
that tests of intelligence represent one of the most
important and well-researched diagnostic tools in
a psychologist’s battery. Global intelligence remains
one of the single best predictors of academic and occu-
pational success (Freberg, Vandiver, Watkins, &
Canivez, 2008; Kaufman, Reynolds, Liu, Kaufman, &
McGrew, 2012; Parker & Benedict, 2002; Roth et al.,
2015; Sattler, 2008) and the general intelligence factor,
as a construct, appears invariant and serves as an
unbiased predictor across gender, disability, and ethnic
groups (Kush & Watkins, 2007; Kush et al., 2001;
Nakano & Watkins, 2013; Watkins & Kush, 2002).
We believe problems occur only when the tests are
asked to do more than they are psychometrically cap-
able of.

Exaggerating the problem is that, many test pub-
lishers attempted to persuade test users that the
strength of their convictions obviates the need for
inquiry. We hope the profession has evolved suffi-
ciently to recognize the fallacy in the circular logic of
Boring’s definition of intelligence (1923, p. 35) “ …
measurable intelligence is simply what the tests of
intelligence test … ” Despite repeated, feeble claims

positing the value of clinical interpretations of factor
index scores, results of the current study add to
a considerable body of evidence that cautions against
this practice (Bodin et al., 2009; Canivez, 2014;
Canivez & Watkins, 2010a, 2010b; Canivez et al.,
2016, 2017, 2019; Canivez et al., 2017, 2019;
Fennollar-Cortés & Watkins, 2019; Gignac &
Watkins, 2013; Lecerf & Canivez, 2018; McGill &
Canivez, 2016, 2018; Nelson et al., 2013; Watkins,
2006, 2010; Watkins & Beaujean, 2014; Watkins
et al., 2013; 2006).

Not unique to the Wechsler family of tests, publish-
ers of commercial scales of intelligence continue to
inflate the claims of what their instruments are capable
of performing. Clearly, an instrument that boasts of the
ability to assess multiple numbers of intelligence will
have greater commercial value than an instrument that
can only measure a single “type” of intelligence.
Students of the scientific method recognize that para-
digmatic shifts rarely develop from within the disci-
pline. In this regard, the repeated, data-driven,
findings from peer-reviewed publications warning
against the practice of the over-interpretation of cogni-
tive profiles (cf., McGill, Dombrowski, & Canivez,
2018) may not be enough for the test publishers to
alter their practices. Unfortunately, these changes may
not occur until external factors, such as litigation, for
example, force publishers to reconsider claims that
their scales have diagnostic utility that can be empiri-
cally substantiated. The WISC–IV Italian measures
g quite well, but unique measurement of group factors
is poor. Interpretations beyond Full-Scale IQ are a risky
proposition that will likely be influenced by clinician’s
illusory correlation and confirmatory bias in decision-
making.
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